How does it work?
EEPROM 13 Click is based on the M24M01E, an electrically erasable programmable memory with enhanced hardware write protection for entire memory from STMicroelectronics. The M24M01E has software and hardware write protection features and random and sequential read modes. If the address area is write-protected, the write instruction is not executed. During the internal write cycle, the serial data is turned off internally, and the device does not respond to any requests. The performance features cover enhanced ESD/latch-up protection, more than 4 million write cycles, more than 200 years of data retention, and a very fast wake-up time (less than 5μs).
EEPROM 13 Click uses a standard 2-wire I2C interface to communicate with the host MCU, supporting standard, fast, and fast mode plus with up to 1MHz of frequency clock. The write control WC pin serves as a write protect option and is active with a High logic state.
This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.
Specifications
Type
EEPROM
Applications
Can be used for the development of consumer and industrial applications where dependable nonvolatile memory storage is essential
On-board modules
M24M01E – EEPROM memory with enhanced hardware write protection for entire memory from STMicroelectronics
Key Features
Supports standard, fast, and fast mode plus I2C interface, 1-Mbit of EEPROM in 256 bytes of page sizes, random and sequential read modes, write protection of the whole memory array, enhanced ESD/ latch-up protection, long data retention and data write cycles, and more
Interface
I2C
Feature
ClickID
Compatibility
mikroBUS™
Click board size
S (28.6 x 25.4 mm)
Input Voltage
3.3V or 5V
Pinout diagram
This table shows how the pinout on EEPROM 13 Click corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).
Onboard settings and indicators
Label | Name | Default | Description |
---|---|---|---|
LD1 | PWR | – | Power LED Indicator |
JP1 | VCC SEL | Left | Logic Level Voltage Selection 3V3/5V: Left position 3V3, Right position 5V |
EEPROM 13 Click electrical specifications
Description | Min | Typ | Max | Unit |
---|---|---|---|---|
Supply Voltage | 3.3 | – | 5 | V |
Memory Size | – | – | 1 | Mbit |
Data Retention | 200 | – | – | Years |
Endurance | 4.000.000 | – | – | Cycles |
Software Support
We provide a library for the EEPROM 13 Click as well as a demo application (example), developed using MIKROE compilers. The demo can run on all the main MIKROE development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager (recommended), downloaded from our LibStock™ or found on Mikroe github account.
Library Description
This library contains API for EEPROM 13 Click driver.
Key functions
-
eeprom13_memory_write
This function writes a desired number of data bytes starting from the selected memory address. -
eeprom13_memory_read
This function reads a desired number of data bytes starting from the selected memory address. -
eeprom13_hw_write_enable
This function disabled hardware write protection of the entire memory.
Example Description
This example demonstrates the use of EEPROM 13 Click board™. The demo app writes specified data to the memory and reads it back.
void application_task ( void )
{
uint8_t data_buf[ 128 ] = { 0 };
memcpy( data_buf, DEMO_TEXT_MESSAGE_1, strlen( DEMO_TEXT_MESSAGE_1 ) );
if ( EEPROM13_OK == eeprom13_memory_write( &eeprom13, STARTING_ADDRESS,
data_buf,
strlen( DEMO_TEXT_MESSAGE_1 ) ) )
{
log_printf( &logger, " Write data: %srn", data_buf );
Delay_ms( 100 );
}
memset( data_buf, 0, sizeof( data_buf ) );
Delay_ms( 100 );
if ( EEPROM13_OK == eeprom13_memory_read( &eeprom13, STARTING_ADDRESS,
data_buf,
strlen( DEMO_TEXT_MESSAGE_1 ) ) )
{
Delay_ms( 100 );
log_printf( &logger, " Read data: %srnn", data_buf );
Delay_ms( 3000 );
}
memcpy( data_buf, DEMO_TEXT_MESSAGE_2, strlen( DEMO_TEXT_MESSAGE_2 ) );
if ( EEPROM13_OK == eeprom13_memory_write( &eeprom13, STARTING_ADDRESS,
data_buf,
strlen( DEMO_TEXT_MESSAGE_2 ) ) )
{
log_printf( &logger, " Write data: %srn", data_buf );
Delay_ms( 100 );
}
memset( data_buf, 0, sizeof( data_buf ) );
Delay_ms( 100 );
if ( EEPROM13_OK == eeprom13_memory_read( &eeprom13, STARTING_ADDRESS,
data_buf,
strlen( DEMO_TEXT_MESSAGE_2 ) ) )
{
Delay_ms( 100 );
log_printf( &logger, " Read data: %srnn", data_buf );
Delay_ms( 3000 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager (recommended), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.EEPROM13
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MIKROE compilers.
mikroSDK
This Click board™ is supported with mikroSDK – MIKROE Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
For more information about mikroSDK, visit the official page.