How does it work?
Analog MUX 5 Click as its foundation uses the MAX4634, a low-on-resistance, low-voltage analog multiplexer from Analog Devices. CMOS switch construction of the MAX4634 allows the processing of analog signals within its supply voltage range. It features 4Ω maximum ON-resistance (RON) and offers RON matching between switches to 0.3Ω maximum and RON flatness of 1Ω maximum over the specified signal range. Also, all digital inputs have +0.8V and +2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility with +5V operation.
This Click board™ communicates with MCU using several GPIO pins. It can be enabled or disabled through the EN pin routed to the CS pin of the mikroBUS™ socket; hence, offering a switch operation to turn ON/OFF power delivery to the MAX4634. It also provides two address signals, labeled as A0 and A1 and routed to the PWM and INT pins of the mikroBUS™ socket, that determine the activation of the desired analog input channel based on their setup while monitoring of that input analog signal is done using AN pin of the mikroBUS™ socket.
Each analog input has a jumper for its hardware activation or deactivation from R3 to R6 and capacitors for additional filtering of the input channels from C3 to C6. Proper power-supply sequencing is recommended for all CMOS devices. Before applying analog signals or logic inputs, always apply the power supply first, especially if the analog or logic signals are not current-limited.
This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the VCC SEL jumper. This way, it is allowed for both 3.3V and 5V capable MCUs to use the communication lines properly. However, the Click board™ comes equipped with a library that contains easy-to-use functions and an example code that can be used, as a reference, for further development.
Specifications
Type
Measurements,Port expander
Applications
Can be used for various applications, from industrial and instrumentation to medical, consumer, communications, and more
On-board modules
MAX4634 – low-on-resistance, low-voltage analog multiplexer from Analog Devices
Key Features
Low power consumption, fast, CMOS switch construction, guaranteed RON, VCC range signal handling, TTL/CMOS-logic compatible, pin-controllable, and more
Interface
Analog,GPIO
Feature
No ClickID
Compatibility
mikroBUS™
Click board size
M (42.9 x 25.4 mm)
Input Voltage
3.3V or 5V
Pinout diagram
This table shows how the pinout on Analog MUX 5 Click corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).
Onboard settings and indicators
Label | Name | Default | Description |
---|---|---|---|
LD1 | PWR | – | Power LED Indicator |
JP1 | VCC SEL | Left | Logic Level Voltage Selection 3V3/5V: Left position 3V3, Right position 5V |
Analog MUX Click electrical specifications
Description | Min | Typ | Max | Unit |
---|---|---|---|---|
Supply Voltage | 3.3 | – | 5 | V |
Analog Input Range | 0 | – | 5 | V |
ON-Resistance | – | – | 4 | Ω |
Operating Temperature Range | -40 | 25 | +85 | °C |
Software Support
We provide a library for the Analog MUX 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Library Description
This library contains API for Analog MUX 5 Click driver.
Key functions:
analogmux5_cfg_setup
– Config Object Initialization function.analogmux5_init
– Initialization function.analogmux5_default_cfg
– Click Default Configuration function.
Examples description
This example showcases how to initialize, configure and use the Analog MUX 5 click module.
void application_task ( void ) { float analogmux5_an_voltage = 0; analogmux5_select_ch( &analogmux5, ANALOGMUX5_SEL_CH_1 ); Delay_ms( 100 ); if ( ADC_ERROR != analogmux5_read_an_pin_voltage ( &analogmux5, &analogmux5_an_voltage ) ) { log_printf( &logger, " Channel [ 1 ] ---> AN Voltage : %.3f[V]rnn", analogmux5_an_voltage ); Delay_ms( 1000 ); } analogmux5_select_ch( &analogmux5, ANALOGMUX5_SEL_CH_2 ); Delay_ms( 100 ); if ( ADC_ERROR != analogmux5_read_an_pin_voltage ( &analogmux5, &analogmux5_an_voltage ) ) { log_printf( &logger, " Channel [ 2 ] ---> AN Voltage : %.3f[V]rnn", analogmux5_an_voltage ); Delay_ms( 1000 ); } analogmux5_select_ch( &analogmux5, ANALOGMUX5_SEL_CH_3 ); Delay_ms( 100 ); if ( ADC_ERROR != analogmux5_read_an_pin_voltage ( &analogmux5, &analogmux5_an_voltage ) ) { log_printf( &logger, " Channel [ 3 ] ---> AN Voltage : %.3f[V]rnn", analogmux5_an_voltage ); Delay_ms( 1000 ); } analogmux5_select_ch( &analogmux5, ANALOGMUX5_SEL_CH_4 ); Delay_ms( 100 ); if ( ADC_ERROR != analogmux5_read_an_pin_voltage ( &analogmux5, &analogmux5_an_voltage ) ) { log_printf( &logger, " Channel [ 4 ] ---> AN Voltage : %.3f[V]rnn", analogmux5_an_voltage ); Delay_ms( 1000 ); } }
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other mikroE Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.AnalogMUX5
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.
mikroSDK
This Click board™ is supported with mikroSDK – MikroElektronika Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
For more information about mikroSDK, visit the official page.