How does it work?
3D Hall 14 Click is based on the MLX90394, a high-precision 3-axis magnetometer from Melexis, which uses the Triaxis® Hall technology to deliver exceptional performance and enhance position sensing in various applications. The MLX90394 is made for micropower applications, making it an excellent choice for battery-powered solutions. It accurately measures magnetic fields along three axes (X, Y, and Z) and converts these measurements and IC temperature into 16-bit words. These data points are then communicated through an I2C interface. The sensor offers flexibility in operation, allowing for measurements to be taken either on demand or continuously, with user-selectable refresh rates. Despite its compact size, the MLX90394 excels in noise performance and maintains low power consumption across various configurations.
One of the standout features of the MLX90394 is its intelligent wake-up modes, which enable the entire system to enter a deep sleep state until a magnetic field change is detected. This detection can be based on different criteria: a change from an initial measurement (Static Delta), a change from the previous measurement (Dynamic Delta), or surpassing a predefined threshold (Absolute). This functionality ensures efficient power management by toggling the device between active and sleep modes, capturing both busy and slowly changing magnetic fields effectively. As mentioned, the 3D Hall 14 Click is ideal for various applications. It can be used in battery-powered tools, household appliances (white goods), industrial machinery, smart home devices, home security systems, and many other contexts where precise and reliable position sensing is crucial.
This Click board™ is designed in a unique format supporting the newly introduced MIKROE feature called “Click Snap.” Unlike the standardized version of Click boards, this feature allows the main sensor area to become movable by breaking the PCB, opening up many new possibilities for implementation. Thanks to the Snap feature, the MLX9039 can operate autonomously by accessing its signals directly on the pins marked 1-8. Additionally, the Snap part includes a specified and fixed screw hole position, enabling users to secure the Snap board in their desired location.
3D Hall 14 Click uses a standard 2-Wire I2C interface to communicate with the host MCU with fast-mode support and frequencies up to 1MHz. In addition to I2C pins, this Click board™ also has the interrupt signal on the INT pin of the mikroBUS™ socket to provide a notification that violates programmed thresholds. This interrupt can serve as a wake-up on change (WOC) interrupt output or a synchronization output.
This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.
Click Snap
Click Snap is an innovative feature of our standardized Click add-on boards, introducing a new level of flexibility and ease of use. This feature allows for easy detachment of the main sensor area by simply snapping the PCB along designated lines, enabling various implementation possibilities. For detailed information about Click Snap, please visit the official page dedicated to this feature.
Specifications
Type
Magnetic
Applications
Ideal for battery-powered tools, household appliances, industrial machinery, smart home devices, and home security systems
On-board modules
MLX90394 – 3-axis magnetometer from Melexis
Key Features
Based on Triaxis® Hall technology for high-precision position sensing, low power consumption, excellent noise performance, flexible measurement modes, intelligent wake-up modes for efficient power management, standard 2-Wire I2C interface, innovative Click Snap design for easy detachment and autonomous operation of the sensor area, interrupt signal, and more
Interface
I2C
Feature
Click Snap,ClickID
Compatibility
mikroBUS™
Click board size
M (42.9 x 25.4 mm)
Input Voltage
3.3V
Pinout diagram
This table shows how the pinout on 3D Hall 14 Click corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).
Onboard settings and indicators
Label | Name | Default | Description |
---|---|---|---|
LD1 | PWR | – | Power LED Indicator |
3D Hall 14 Click electrical specifications
Description | Min | Typ | Max | Unit |
---|---|---|---|---|
Supply Voltage | – | 3.3 | – | V |
Magnetic Measurement Range | ±5 | – | ±50 | mT |
Magnetic Sensitivity | 0.15 | – | 1.5 | µT/LSB |
Software Support
We provide a library for the 3D Hall 14 Click as well as a demo application (example), developed using MIKROE compilers. The demo can run on all the main MIKROE development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager (recommended), downloaded from our LibStock™ or found on MIKROE github account.
Library Description
This library contains API for 3D Hall 14 Click driver.
Key functions
-
c3dhall14_get_magnetic_flux
This function reads the raw values of X, Y, and Z axis and converts them to magnetic flux data in microTesla. -
c3dhall14_get_temperature
This function reads the raw temperature value and converts it to Celsius. -
c3dhall14_set_range
This function sets the magnetic flux measurement range.
Example Description
This example demonstrates the use of 3D Hall 14 Click board™ by reading the magnetic field strength from 3 axes and the sensor internal temperature.
void application_task ( void )
{
float x_axis = 0;
float y_axis = 0;
float z_axis = 0;
float temperature = 0;
if ( C3DHALL14_OK == c3dhall14_get_magnetic_flux ( &c3dhall14, &x_axis, &y_axis, &z_axis ) )
{
log_printf( &logger, " X-axis: %.1f uTrn", x_axis );
log_printf( &logger, " Y-axis: %.1f uTrn", y_axis );
log_printf( &logger, " Z-axis: %.1f uTrn", z_axis );
}
if ( C3DHALL14_OK == c3dhall14_get_temperature ( &c3dhall14, &temperature ) )
{
log_printf( &logger, " Internal temperature: %.2f Crnn", temperature );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager (recommended), downloaded from our LibStock™ or found on MIKROE github account.
Other MIKROE Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.3DHall14
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MIKROE compilers.
mikroSDK
This Click board™ is supported with mikroSDK – MIKROE Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
For more information about mikroSDK, visit the official page.