How does it work?
Thermo K Click is based on the MCP9600, a thermocouple EMF to temperature converter from Microchip. This converter typically has an accuracy of ±0.5°C for thermocouple hot-junction with very good hot and cold-junctions resolution of +0.0625°C. It features four programmable temperature alert outputs that monitor hot or cold-junction temperature, detects rising or falling temperature, and has up to 255°C of programmable hysteresis. In addition, it comes with integrated cold-junction compensation, and the correction coefficients are derived from the NIST Institute database. The Delta-Sigma ADC converter can work in 12/14/16/18-bit selectable resolutions, which is useful for detecting fast temperature transients.
The MCP9600 provides integrated thermocouple open-circuit and short-circuit detection, with an alert signal when the thermocouple wire is broken or disconnected, a feature that comes in handy. In the same way, the alert signal is asserted if the thermocouple wire is shorted to the ground or power. Regarding the alert, the MCP9600 will also notify the wrong polarity either in Comparator or Interrupt modes. The Comparator mode is helpful for thermostat-type applications to switch fan controllers, LEDs, and more, while the Interrupt mode is more convenient for microprocessor-based systems. The low-power segment comes in Shutdown mode and Burst mode with 1 up to 128 temperature samples.
The Thermo K Click uses a standard 2-Wire I2C interface to communicate with the host MCU, supporting standard 100KHz frequency. The four alert outputs from the MCP9600 can be observed over the AL1, AL2, AL3, and AL4 pins of the mikroBUS™ socket. These are programmable push-pull outputs. The Thermo K Click comes with a PCC-SMP connector for connecting an appropriate probe that MIKROE offers, the K-type Glass Braid Insulated probe.
This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.
Specifications
Type
Temperature & humidity
Applications
Can be used for the development of hand-held measurement equipment, industrial equipment thermal management, petrochemical thermal management, and more
On-board modules
MCP9600 – thermocouple EMF to temperature converter from Microchip
Key Features
Integrated cold-junction compensation, integrated thermocouple open-circuit, and short-circuit detection, support all K-type probes, good measurement resolution and accuracy, programmable temperature alerts, programmable digital filter for temperatures, and more
Interface
GPIO,I2C
Feature
No ClickID
Compatibility
mikroBUS™
Click board size
M (42.9 x 25.4 mm)
Input Voltage
3.3V or 5V
Pinout diagram
This table shows how the pinout on THERMO K click corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).
Onboard settings and indicators
Label | Name | Default | Description |
---|---|---|---|
– | PWR | – | Power LED Indicator |
– | PWR SEL | Left | Power/Logic Voltage Level Selection 3V3/5V: Left position 3V3, Right position 5V |
– | ADDR SEL | Left | I2C Address Selection 0/1: Left position 0, Right position 1 |
Thermo K Click electrical specifications
Description | Min | Typ | Max | Unit |
---|---|---|---|---|
Supply Voltage | 3.3 | – | 5 | V |
K-type Probe Temperature Measure Range | – | – | +480 | °C |
Accuracy | – | ±0.5 | – | °C |
Resolution | – | – | 18 | bit |
Software Support
We provide a library for the Thermo K Click as well as a demo application (example), developed using MIKROE compilers. The demo can run on all the main MIKROE development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager (recommended), downloaded from our LibStock™ or found on Mikroe github account.
Library Description
This library contains API for Thermo K Click driver.
Key functions
-
Temperature data
-
Get status
-
Functions for read device info
Example Description
Demo application shows basic temperature reading using Thermo K click.
void application_task ( void )
{
float temperature;
// Task implementation.
temperature = thermok_get_temperature( &thermok,
THERMOK_REG_HOT_JUNCTION_TEMP_THR,
THERMOK_TEMP_IN_CELSIUS );
log_printf( &logger, ">> Temperature is %.2f Crn", temperature );
Delay_ms( 1500 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager (recommended), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.ThermoK
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MIKROE compilers.
mikroSDK
This Click board™ is supported with mikroSDK – MIKROE Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
For more information about mikroSDK, visit the official page.