How does it work?
EZO Carrier Click – Conductivity is based on the EZO-EC™, an ISO 7888 compliant embedded conductivity circuit board from Atlas Scientific. This is a versatile and accurate solution for measuring conductivity, salinity, and Total Dissolved Solids (TDS) in various applications from chemical production to hydroponics. With a conductivity range of 0.07 to over 500,000 μS/cm, it can also accurately measure salinity up to 42 PSU (ppt), TDS as ppm, and specific gravity of seawater between 1.00 and 1.300. This advanced module offers the precision and functionality comparable to high-end bench-top conductivity meters, making it an ideal choice for embedding into projects that require reliable water chemistry measurements.
Boasting an accuracy of +/- 2% and a quick EC reading time of 600ms, the EZO-EC™ supports probes ranging from K 0.01 to K 10.2 of any brand. It allows for both two-point and three-point calibration, ensuring precise measurements. Additionally, it features temperature compensation for more accurate readings across various conditions.
This circuit is a very sensitive device, and the sensitivity gives it its accuracy. That’s why the EZO-EC™ needs to be isolated from the host MCU; therefore, this Click™ board comes with the Si8400AB, a bidirectional isolator from Skyworks. The isolator provides standard bidirectional and I2C communication with a clock frequency of up to 1.7MHz. So, to eliminate the electrical noise, besides the Si8400AB isolator, the power supply voltage is also isolated. For this purpose, this Click™ board is equipped with the ROE-0505S, a DC/DC converter from Recom.
EZO Carrier Click – Conductivity can use a standard 2-wire UART interface to communicate with the host MCU with the default baud rate of 9600bps. While using the UART interface, you can use the library we provide or a simple ASCII set of commands. You can also choose a standard 2-wire I2C interface over the COMM SEL jumpers. From calibration to timed readings, the Atlas Scientific EZO-EC™ circuit is a drop-in solution to a complex measurement. It features sleep mode, continuous operation, find function, export/import calibration, on-module status LED, and many more features detailed and described in the attached datasheet.
This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.
Specifications
Type
Environmental,Measurements
Applications
Can be used or measuring conductivity, salinity, and Total Dissolved Solids (TDS) in various applications from chemical production to hydroponics
On-board modules
EZO-EC™ – embedded conductivity circuit board from Atlas Scientific
Key Features
ISO 7888 compliant, high stability and accuracy, easy-to-use data protocol, simple command structure, works with any off-the-shelf K probe, noise immunity, completely isolated data and power supply lines, and more
Interface
I2C,UART
Feature
ClickID
Compatibility
mikroBUS™
Click board size
L (57.15 x 25.4 mm)
Input Voltage
3.3V or 5V
Pinout diagram
This table shows how the pinout on EZO Carrier Click – Conductivity corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).
Onboard settings and indicators
Label | Name | Default | Description |
---|---|---|---|
LD1 | PWR | – | Power LED Indicator |
JP1 | VCC SEL | Left | Logic Level Voltage Selection 3V3/5V: Left position 3V3, Right position 5V |
JP2-JP3 | COMM SEL | Right | Communication Interface Selection I2C/UART: Left position I2C, Right position UART |
EZO Carrier Click – Conductivity electrical specifications
Description | Min | Typ | Max | Unit |
---|---|---|---|---|
Supply Voltage | 3.3 | – | 5 | V |
Conductivity Range | 0.07 | – | 500.000 | μS/cm |
Salinity Range | 0 | – | 42 | ppt |
Sea Water Gravity | 1.00 | – | 1.300 | – |
Accuracy | -2 | – | +2 | % |
Software Support
We provide a library for the EZO Carrier EC Click as well as a demo application (example), developed using MIKROE compilers. The demo can run on all the main MIKROE development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended), downloaded from our LibStock™ or found on Mikroe github account.
Library Description
This library contains API for EZO Carrier EC Click driver.
Key functions
-
ezocarrierec_send_cmd
Send command function. -
ezocarrierec_send_cmd_with_par
Send command function with parameter. -
ezocarrierec_send_cmd_check
Check the sent command.
Example Description
This example demonstrates the use of EZO Carrier EC Click board™ by processing the incoming data and displaying them on the USB UART.
void application_task ( void )
{
log_printf( &logger, "Reading... rn" );
ezocarrierec_send_cmd( &ezocarrierec, EZOCARRIEREC_CMD_SINGLE_READ );
error_flag = ezocarrierec_rsp_check( &ezocarrierec, EZOCARRIEREC_RSP_OK );
ezocarrierec_error_check( error_flag );
Delay_ms( 5000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.EZOCarrierEC
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MIKROE compilers.
mikroSDK
This Click board™ is supported with mikroSDK – MIKROE Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
For more information about mikroSDK, visit the official page.