How does it work?
EZO Carrier Click – Oxygen is based on the EZO-DO™, an ISO 5814 compliant embedded dissolved oxygen circuit board from Atlas Scientific. It allows you to interface any galvanic measurement probe, which determines the dissolved oxygen of a liquid in your application, by sinking the probe into the solvent you want to measure the oxygen. The EZO Carrier Click – Oxygen comes with the BNC connector for interfacing the appropriate probe, which MIKROE also offers. The EZO-DO™ needs to be isolated from the host MCU; therefore, this Click™ board comes with the Si8400AB, a bidirectional isolator from Skyworks. The isolator provides standard bidirectional and I2C communication with a clock frequency of up to 1.7MHz.
The EZO-DO™ circuit is a very sensitive device, and the sensitivity is what gives this circuit its accuracy. It can read micro-voltages that are bleeding into the water from unnatural sources such as pumps, solenoid valves, or other probes/sensors. So, to eliminate the electrical noise, besides the Si8400AB isolator, the power supply voltage is also isolated. For this purpose, this Click™ board is equipped with the ROE-0505S, a DC/DC converter from Recom. The EZO-DO™ has a flexible calibration protocol allowing for single-point, two-point, or three-point calibration. The temperature compensation should be taken into account. The EZO-DO™ features sleep mode, continuous operation, find function, export/import calibration, on-module status LED, and many more features detailed and described in the attached datasheet.
EZO Carrier Click – Oxygen can use a standard 2-wire UART interface to communicate with the host MCU with the default baud rate of 9600bps. While using the UART interface, you can use the library we provide or a simple ASCII set of commands. You can also choose a standard 2-wire I2C interface over the COMM SEL jumpers.
This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.
Specifications
Type
Environmental,Gas
Applications
Can be used for electrochemical sensing and also capable of reading micro-voltages that are bleeding into the water from unnatural sources such as pumps, solenoid valves, or other probes/sensors
On-board modules
EZO-DO™ – embedded dissolved oxygen circuit board from Atlas Scientific
Key Features
ISO 5814 compliant, high stability and accuracy, easy-to-use data protocol, simple command structure, flexible calibration protocol, works with any off-the-shelf galvanic probe, noise immunity, completely isolated data and power supply lines, and more
Interface
I2C,UART
Feature
ClickID
Compatibility
mikroBUS™
Click board size
L (57.15 x 25.4 mm)
Input Voltage
3.3V or 5V
Pinout diagram
This table shows how the pinout on EZO Carrier Click – Oxygen corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).
Onboard settings and indicators
Label | Name | Default | Description |
---|---|---|---|
LD1 | PWR | – | Power LED Indicator |
JP1 | VCC SEL | Left | Logic Level Voltage Selection 3V3/5V: Left position 3V3, Right position 5V |
JP2-JP3 | COMM SEL | Right | Communication Interface Selection I2C/UART: Left position I2C, Right position UART |
EZO Carrier Click – Oxygen electrical specifications
Description | Min | Typ | Max | Unit |
---|---|---|---|---|
Supply Voltage | 3.3 | – | 5 | V |
Dissolved Oxygen Range | 0.01 | – | 100 | mg/L |
Accuracy | -0.05 | – | +0.05 | mg/L |
Software Support
We provide a library for the EZO Carrier DO Click as well as a demo application (example), developed using MIKROE compilers. The demo can run on all the main MIKROE development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended), downloaded from our LibStock™ or found on Mikroe github account.
Library Description
This library contains API for EZO Carrier DO Click driver.
Key functions
-
ezocarrierdo_send_cmd
Send command function. -
ezocarrierdo_send_cmd_with_par
Send command function with parameter. -
ezocarrierdo_send_cmd_check
Check the sent command.
Example Description
This example demonstrates the use of EZO Carrier DO click board by processing the incoming data and displaying them on the USB UART.
void application_task ( void )
{
log_printf( &logger, "Reading... rn" );
ezocarrierdo_send_cmd( &ezocarrierdo, EZOCARRIERDO_CMD_SINGLE_READ );
error_flag = ezocarrierdo_rsp_check( &ezocarrierdo, EZOCARRIERDO_RSP_OK );
ezocarrierdo_error_check( error_flag );
Delay_ms( 5000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.EZOCarrierDO
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MIKROE compilers.
mikroSDK
This Click board™ is supported with mikroSDK – MIKROE Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
For more information about mikroSDK, visit the official page.